Skip to main content

Multiplication Trick 5



1. Condition :  This trick is used when we multiply quickly three numbers near  a  same power of 10.
Example.  103×112×108 


Illustration 1 :     107×102×105

Numbers       Base
       Difference    
 107               100        +7 (let a=7)
 102               100        +2 (let b=2)
 105               100        +5 (let c=5)
Solution: 
1st part / 
2nd part 3rd part 
                     
(Number of digits in the 2nd and 3nd part =Number of 0s in the base)
                          
formula:
107+b+c a×b+b×c+c×a a×b×c
107+2+5 7×2+2×5+5×7 7×2×5
      114    /    14+10+35    /   70
      114    /           59          /   70

 Answer is   1145970   

 Note: 1st part can either be  107+b+c  or  102+a+c  or   105+a+b



Illustration 2 :     102×109×106

 Numbers            Base            Difference    
  102                    100                  +2 (let a=2)
  109                    100                  +9 (let b=9)
  106                    100                  +6 (let c=6)
Solution:     
1st part / 2nd part 3rd part 
                     
(Number of digits in the 2nd and 3nd part =Number of 0s in the base)
                          
formula:       
102+b+c a
×b+b×c+c×a×b×
102+9+6 
2×9+9×6+6×2×9×6
     117     
/     18+54+1      /   108
     117               84          /   108
     117     /   84+1(carry)   /    08
     117     /         85            /    08

      Answer is       1178508 

Note: 1st part can either be  102+b+c  or  109+a+c  or   106+a+b


Try Now :
1.  12
×13×11
2.  102
×103×104
3.  104
×108×113
4.  1002
×1005×1006
5.  1003
×1007×1011





Comments

Popular posts from this blog

Complement of a Number

Subtraction of Binary Numbers  ;  Octal and Hexadecimal Number  ;  Convert Decimal to Binary Complements Complements are used in digital computers for simplifying the subtraction operation and for logical manipulations. There are two types of complements for each base-r system: (1) the r’s complement and (2) the (r-1)’s complement. When the value of the base is substituted, the two types receive the names 2’s and 1’s complement for binary numbers,  10’s and 9’s complement for decimal numbers. The r’s Complement Given a positive number N in base r with an integer part of n digits, the r’s complement of N is defined as r n   - N for N is not equal to 0 and 0 for N = 0. The following numerical example will help clarify the definition. The 10’s complement of (52520) 10 is 10 5 – 52520 = 47480 The number of digits in the number is n= 5 The 10’s complement of (0.3267) 10 is 1 – 0.3267 = 0.6733 No integer part, so 10 n = 10 0 = 1 The 10’s...

Rules of divisibility part -1

Rules of divisibility In Vedic mathematics, it can be determined whether any part of any other number can be given completely without dividing it by several methods. These methods are based on the law of divisibility. By using these rules, calculations related to factors, parts etc. are simplified. Law of divisibility by number 2 :- If unit digit of given number is divisible by 2 then the given number is divisible by 2 also.                                                                 or  If unit digit of given number is 0,2,4,6 or 8 , then given number is divisible by 2. Example :- 10 ,32 ,74 ,108 ,2058 etc. Law of divisibility by number 3 :- If the sum of digits of given number is divisible by 3, then the number is divisible by 3 also. Illustration 1:-  In 546532 sum of digits=5+4+6+5+3+2=25 25 is not divisible...

Square of the number

     This article is used to find out the square of  a number in a short period of time compare to normal maths. It increase the speed of your calculations.  The answer obtained by multiplying a number by itself is the square of that number. Example :- 6×6= 36 which is the square of 6.                          8×8= 64 which is the square of 8.      1.   Square of numbers ending in 5 :- Example 1-: 35 2 =   ? Step 1:- Multiply the first part by the first part plus 1: 3 ×(3+1) =3×4 =12 Step 2:- Write the number 25 next to the result from step 1: 35 2 = 12_25 = 1225 Example 2-: (in 3 digits) 125 2 =   ? Step 1:- Multiply the first part by the first part plus 1: 12 ×(12+1) =12×13 =156 Step 2:- Write the number 25 next to the result from step 1: 125 2 = 156_25 = 15625 Example 3-: (in decimal numbers) 9.5 2 =     ? Step 1:- M...