Skip to main content

Multiplication Trick 5



1. Condition :  This trick is used when we multiply quickly three numbers near  a  same power of 10.
Example.  103×112×108 


Illustration 1 :     107×102×105

Numbers       Base
       Difference    
 107               100        +7 (let a=7)
 102               100        +2 (let b=2)
 105               100        +5 (let c=5)
Solution: 
1st part / 
2nd part 3rd part 
                     
(Number of digits in the 2nd and 3nd part =Number of 0s in the base)
                          
formula:
107+b+c a×b+b×c+c×a a×b×c
107+2+5 7×2+2×5+5×7 7×2×5
      114    /    14+10+35    /   70
      114    /           59          /   70

 Answer is   1145970   

 Note: 1st part can either be  107+b+c  or  102+a+c  or   105+a+b



Illustration 2 :     102×109×106

 Numbers            Base            Difference    
  102                    100                  +2 (let a=2)
  109                    100                  +9 (let b=9)
  106                    100                  +6 (let c=6)
Solution:     
1st part / 2nd part 3rd part 
                     
(Number of digits in the 2nd and 3nd part =Number of 0s in the base)
                          
formula:       
102+b+c a
×b+b×c+c×a×b×
102+9+6 
2×9+9×6+6×2×9×6
     117     
/     18+54+1      /   108
     117               84          /   108
     117     /   84+1(carry)   /    08
     117     /         85            /    08

      Answer is       1178508 

Note: 1st part can either be  102+b+c  or  109+a+c  or   106+a+b


Try Now :
1.  12
×13×11
2.  102
×103×104
3.  104
×108×113
4.  1002
×1005×1006
5.  1003
×1007×1011





Comments

Popular posts from this blog

Rules of divisibility part -1

Rules of divisibility In Vedic mathematics, it can be determined whether any part of any other number can be given completely without dividing it by several methods. These methods are based on the law of divisibility. By using these rules, calculations related to factors, parts etc. are simplified. Law of divisibility by number 2 :- If unit digit of given number is divisible by 2 then the given number is divisible by 2 also.                                                                 or  If unit digit of given number is 0,2,4,6 or 8 , then given number is divisible by 2. Example :- 10 ,32 ,74 ,108 ,2058 etc. Law of divisibility by number 3 :- If the sum of digits of given number is divisible by 3, then the number is divisible by 3 also. Illustration 1:-  In 546532 sum of digits=5+4+6+5+3+2=25 25 is not divisible...

Octal and Hexadecimal Number

Complement of a Number    Types of Number system    Convert Decimal to Binary If you are new to this article, I strongly recommend to read our previous article before preceding this. In our previous article, we had already seen that binary number has a base of 2. It means that binary number contains 2 1 = 2 combinations which are 0 and 1. Similarly, Octal and Hexadecimal number has a fixed number of combinations. As we earlier know that octal has a base 8, then it contains 8 digits through 0 to 7 which means 2 3 =8 combinations and Hexadecimal has a base 16 which means it has 2 4 =16 combinations.                 If you are focusing on a sequence i.e. octal, hexadecimal. They are the combinations of increasing power of 2. Octal – 2 3 , Hexadecimal - 2 4 This power indicates how many bits are in a number for a particular number system Octal has 3 bits Hexadecimal has 4 bits T...

mathematics skills

Are you ready to give your mathematics skills a boost? These simple math tricks can help you perform calculations more quickly and easily. They also come in handy if you want to impress your teacher, parents, or friends. 01 The Answer Is 2 Think of a number. Multiply it by 3. Add 6. Divide this number by 3. Subtract the number from Step 1 from the answer in Step 4. The answer is 2. Same Three-Digit Number Think of any three-digit number in which each of the digits is the same. Examples include 333, 666, 777, and 999. Add up the digits. Divide  the three-digit number by the answer in Step 2. The answer is 37. Six Digits Become Three Take any three-digit number and write it twice to make a six-digit number. Examples include 371371 or 552552. Divide the number by 7. Divide it by 11. Divide it by 13. The order in which you do the division is unimportant! The answer is the three-digit number. Examples: 371371 gives you 371 or 552552 gives you 552. A related trick is to take any three-di...