Skip to main content

About us

This blog for the students has been designed strictly in accordance with the competitive examinations. The aim of the blog is to developed the analytical thinking and scientific skills of students to help them prepare for the board examinations and competitive examinations. The content is presented in an easy language and a lucid manner to facilitate a clear understanding of the subject.

This blog contains exhaustive solved examples to help students learn various topics in an easy manner. Language of this series of topics has been kept very simple and the series aims to make subjects more attractive and understandable for the learners.

It is hoped that our readers will go through this blog and will appreciate the efforts put into bringing out the blog.It is hoped that this blog will able to create interest in the subject and also motivate the students for various competitive examinations.

                                                                                                                                      Rohit Vaish


Comments

Popular posts from this blog

Complement of a Number

Subtraction of Binary Numbers  ;  Octal and Hexadecimal Number  ;  Convert Decimal to Binary Complements Complements are used in digital computers for simplifying the subtraction operation and for logical manipulations. There are two types of complements for each base-r system: (1) the r’s complement and (2) the (r-1)’s complement. When the value of the base is substituted, the two types receive the names 2’s and 1’s complement for binary numbers,  10’s and 9’s complement for decimal numbers. The r’s Complement Given a positive number N in base r with an integer part of n digits, the r’s complement of N is defined as r n   - N for N is not equal to 0 and 0 for N = 0. The following numerical example will help clarify the definition. The 10’s complement of (52520) 10 is 10 5 – 52520 = 47480 The number of digits in the number is n= 5 The 10’s complement of (0.3267) 10 is 1 – 0.3267 = 0.6733 No integer part, so 10 n = 10 0 = 1 The 10’s...

Rules of divisibility part -1

Rules of divisibility In Vedic mathematics, it can be determined whether any part of any other number can be given completely without dividing it by several methods. These methods are based on the law of divisibility. By using these rules, calculations related to factors, parts etc. are simplified. Law of divisibility by number 2 :- If unit digit of given number is divisible by 2 then the given number is divisible by 2 also.                                                                 or  If unit digit of given number is 0,2,4,6 or 8 , then given number is divisible by 2. Example :- 10 ,32 ,74 ,108 ,2058 etc. Law of divisibility by number 3 :- If the sum of digits of given number is divisible by 3, then the number is divisible by 3 also. Illustration 1:-  In 546532 sum of digits=5+4+6+5+3+2=25 25 is not divisible...

Square of the number

     This article is used to find out the square of  a number in a short period of time compare to normal maths. It increase the speed of your calculations.  The answer obtained by multiplying a number by itself is the square of that number. Example :- 6×6= 36 which is the square of 6.                          8×8= 64 which is the square of 8.      1.   Square of numbers ending in 5 :- Example 1-: 35 2 =   ? Step 1:- Multiply the first part by the first part plus 1: 3 ×(3+1) =3×4 =12 Step 2:- Write the number 25 next to the result from step 1: 35 2 = 12_25 = 1225 Example 2-: (in 3 digits) 125 2 =   ? Step 1:- Multiply the first part by the first part plus 1: 12 ×(12+1) =12×13 =156 Step 2:- Write the number 25 next to the result from step 1: 125 2 = 156_25 = 15625 Example 3-: (in decimal numbers) 9.5 2 =     ? Step 1:- M...